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In the present study, the finite element (FE) implementation of elasto-plasticity without
a yield surface is discussed. For that purpose, the method of perturbing the deformation
gradient tensor is employed to calculate approximate tangent moduli. The development of a
user subroutine that enables one to use the proposed model within the FE programABAQUS
is covered. A number of exemplary numerical simulations is conducted in order to check the
performance of this subroutine. Material parameter values determined for different materials
are utilized. Finally, the presented constitutive equation is examined upon its ability to
capture the shear-softening process.
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1. Introduction

In this study, the finite element (FE) implementation of a plasticity theory is discussed, which
does not introduce neither the yield surface nor the split of strain measures into elastic and
plastic components. The basic concepts of the considered framework were first introduced as a
part of a viscoplastic constitutive model for polymeric materials, cf Suchocki (2015). Further
research proved applicability of the proposed theory to model the material response of metals
(Suchocki and Skoczylas, 2016). However, in the case of metallic materials, correct numerical
implementation of the considered class of constitutive equations requires a completely different
approach from the one used in polymer modeling. This new treatment employs the perturbed
deformation gradient method and is discussed in detail further in this work.

The proposed framework of constitutive modeling is a special case of the theory of plasticity
whose basic assumptions were introduced by Pipkin and Rivlin (1965). However, the concept
of an intrinsic time adopted therein and defined as the arclength in the nine-dimensional strain
space has been slightly modified for the purpose of present considerations (cf Suchocki, 2015;
Suchocki and Skoczylas, 2016). The fictitious time is utilized to build a functional of the defor-
mation history which determines the material stress response and is analogous to the history
functional known from the viscoelasticity theory (e.g. Holzapfel, 2010). The whole constituti-
ve model is written in terms of tensorial internal state variables whose change with time is
determined by proper evolution equations.

The FE implementation of the flow theory of plasticity based on the Huber-Mises-Hencky
(HMH) yield condition (e.g. Olesiak, 1975) has been a subject of research for a long time. Various
concepts of numerical integration have been proposed for the HMH flow plasticity such as radial
return algorithms, see for instance Simo and Hughes (2000). These algorithms are rather costly
in terms of numerical computations. In each iteration of the Newton-Raphson (N-R) procedure,
the criterion of material plastic flow has to be checked. If a plastic deformation occurs, another
N-R iterative process has to be initiated in order to calculate the increment of the equivalent
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plastic strain. Nevertheless, the numerical algorithms and codes for the HMH flow plasticity
have been optimized for decades and are considerably well established nowadays.
The FE implementation of plasticity theories which do not introduce a yield surface attracted

rather little attention over the years. Lee (1995) discussed numerical implementation of the
endochronic theory of plasticity that was developed by Valanis (1971a,b). Kästner et al. (2012)
developed and implemented into the finite element method (FEM) a viscoplastic constitutive
model which contained an elasto-plastic component similar to the endochronic formulation by
Valanis. Both aforementioned approaches referred to the small strain domain. The constitutive
equation proposed by Kästner et al. (2012) was further extended to the finite strain range by
Alkas Yonan et al. (2013) using the spatial description in the deformed configuration of material
continuum. The FE implementation was discussed as well. A viscoplastic model containing an
elasto-plastic term without a yield condition was also proposed and implemented into FEM by
Suchocki (2015). This model was formulated in the reference configuration using the material
description and presents itself a generalization of the hyperelasticity theory. The approximation
of the Material Jacobian (MJ) tensor proposed by Suchocki (2015) proved to be accurate enough
for the purpose of modeling the mechanical response of polymers. However, application of the
same constitutive modeling framework to metallic materials results in much higher values of the
model constants. Consequently, it was noticed that a more accurate approximation of the MJ is
required in order to describe the mechanical behavior of metals.
In the present work, the perturbed deformation gradient method proposed by Sun et al.

(2008) is utilized to implement into FEM the constitutive equation of elasto-plasticity without
the yield surface, cf Suchocki an Skoczylas (2016). The implementation of the model into the FE
program ABAQUS is facilitated by taking advantage of the user subroutine UMAT (UserMA-
Terial). The presented framework can also be adapted to other FE packages. The accuracy of
the implementation is checked using numerous FE simulations performed for different material
parameter values. The simplified approach which can be used for the modeling of polymeric ma-
terials such as polyethylene, for instance, is briefly discussed as well. The ability of the proposed
constitutive model to describe the shear-softening process (e.g. Kowalewski and Szymczak, 2009)
is investigated. Finally, an exemplary simulation is conducted to check the performance of the
user subroutine for the case of nonhomogenous stress and strain states.

2. Basic notions

The stored elastic energy functionW (C) is assumed in the decoupled form (e.g. Holzapfel, 2010)

W (C) = U(J) +W (C) (2.1)

where U(J) and W (C) are the volumetric and isochoric components, respectively. The multi-
plicative split of the deformation gradient F is utilized, i.e.

F = FvolF J = detF Fvol = J
1

31 F = J−
1

3F (2.2)

which enables one to define the isochoric right Cauchy-Green (C-G) deformation tensor C with
a set of algebraic invariants, i.e.

C = F
T
F = J−

2

3C Ī1 = trC Ī2 =
1

2
[( trC)2 − trC

2
] Ī3 = detC = 1

(2.3)

The total second Piola-Kirchhoff (P-K) stress S is assumed to be the sum of the elastic com-
ponent S0 and the tensorial internal state variables H̃k (k = 1, 2, . . . , N) which account for the
inelastic effects (cf Suchocki and Skoczylas, 2016), thus
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S = S0 +
N∑

k=1

H̃k S0 = S
vol
0 + S

iso
0

Svol0 = JpC
−1 Siso0 = J

−
2

3 DEV [S]

(2.4)

where

p =
∂U

∂J
S = 2

∂W

∂C

∣∣∣∣
C=C

T
DEV[S] = S−

1

3
(S ·C)C

−1
(2.5)

The change of each of the internal state variables is governed by a separate evolution equation,
i.e.

˙̃
Hk +

1

D̃kM(|Ċ|)
H̃k = γkṠ

iso
0 k = 1, 2, . . . , N (2.6)

with

M(|Ċ|) = J̄
−
1

2

2 J̄2 = tr Ċ
2

(2.7)

whereas D̃k and γk are the material parameters k = 1, 2, . . . , N .

3. Finite element implementation

For the purpose of numerical implementation, the considered constitutive model has to be di-
scretized and further linearized, i.e. expressed as a linear relation between the finite increments
of stress and strain. Below both formulations are presented.

3.1. Discretized constitutive equation

According to Eqs. (2.4)1 and (2.4)2, for the time increment n+1, the total second P-K stress
is given as

Sn+1 = S0n+1 +
N∑

k=1

H̃k n+1 S0n+1 = S
vol
0n+1 + S

iso
0n+1 (3.1)

with the internal state variables being determined from the discretized evolution equations, i.e.

H̃k n+1 =

(
1− 1

D̃k

∆zn+1
2

)
H̃k n + γk(S

iso
0n+1 − S

iso
0n)

1 + 1

D̃k

∆zn+1
2

k = 1, 2, . . . , N (3.2)

where ∆zn+1 is the increment of arclength, namely

∆zn+1 =
√
∆Cn+1 ·∆Cn+1 (3.3)

The recurrence-update formula defined by Eq. (3.2) has been obtained by applying the central
difference rule to Eq. (2.6), cf Suchocki (2015).
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3.2. Linearized constitutive model

Taking the directional derivative on Eq. (3.1)1 yields

∆Sn+1 = C
e−p
n+1 ·

1

2
∆Cn+1 C

e−p
n+1 = 2

∂Sn+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

(3.4)

with Ce−pn+1 being the fourth-order elasto-plastic stiffness tensor. Pushing Eq. (3.4)1 forward to
the current configuration leads to the incremental rate equation

τ
∇

n+1 = Jn+1C
MJ
n+1 ·∆Dn+1 (3.5)

where the incremental Zaremba-Jaumann (Z-J) rate of the Kirchhoff stress τn+1 is given as

τ
∇

n+1 = ∆τn+1 −∆Wn+1τn+1 − τn+1∆W
T
n+1 τn+1 = Fn+1Sn+1F

T
n+1 (3.6)

The increments of the spin tensor Wn+1, the strain rate tensor Dn+1 and the deformation
gradient Fn+1 are defined by the following formulas

∆Wn+1 =
1

2

[
∆Fn+1F

−1
n+1 − (∆Fn+1F

−1
n+1)

T]

∆Dn+1 =
1

2

[
∆Fn+1F

−1
n+1 + (∆Fn+1F

−1
n+1)

T]

∆Fn+1 = Fn+1F
−1
n

(3.7)

whereas the MJ tensor takes the form

C
MJ
n+1 =

1

Jn+1
(Cτcn+1 + In+1) (3.8)

with

C
τc
n+1 = (FiPFjQFkRFlSC

e−p
PQRS)n+1ei ⊗ ej ⊗ ek ⊗ el

In+1 =
1

2
(δikτjl + τikδjl + δilτjk + τilδjk)n+1ei ⊗ ej ⊗ ek ⊗ el

(3.9)

where {ek} (k = 1, 2, 3) is a Cartesian base in the current configuration. For the class of con-
stitutive equations considered in this work, it is not possible to find an analytical, closed-form
equation determining the MJ tensor. Thus, approximation methods have to be employed.

3.3. Approximate formula for Material Jacobian

Inserting Eq. (3.1)1 into Eq. (3.4)2 yields

C
e−p
n+1 = 2

∂Sn+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

= 2
∂S0n+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

+
M∑

k=1

2
∂H̃k n+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

(3.10)

where, according to (3.1)2, the elasticity tensor C0n+1 is given as

C0n+1 = 2
∂S0n+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

= 2
∂Svol0n+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

+ 2
∂Siso0n+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

= Cvol0n+1 + C
iso
0n+1

(3.11)

In general, utilizing Eq. (3.2) for calculation of 2
∂H̃k n+1
∂Cn+1

∣∣
Cn+1=CTn+1

derivatives (k = 1, 2, . . . , N)

leads the approximate elasto-plastic stiffness tensor Ce−pn+1 to the loss of certain symmetries which
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are required for a material to be initially isotropic. This fact was previously highlighted by
Kästner et al. (2012) for the case of infinitesimal strains. However, for small values of constants γk
(k = 1, 2, . . . , N), the following approximation provides a good accuracy and preserves the initial
material isotropy, i.e.

2
∂H̃k n+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

≈ γk
(
1 +
∆zn+1

2D̃k

)−1
C
iso
0n+1 (3.12)

Substitution of Eqs (3.11) and (3.12) into Eq. (3.10) leads to the formula

C
e−p
n+1 = C

vol
0n+1 +

[
1 +

N∑

k=1

γk
(
1 +
∆zn+1

2D̃k

)−1]
C
iso
0n+1 (3.13)

An analogous result can be found for the small strain formulation, cf Kästner et al. (2012). By
pushing Eq. (3.13) forward to the current configuration, the stiffness tensor associated with the
convected rate of the Kirchhoff stress is found, i.e.

C
τc
n+1 = C

vol
n+1 +

[
1 +

N∑

k=1

γk
(
1 +
∆zn+1

2D̃k

)−1]
C
iso
n+1 (3.14)

By inserting Eq. (3.14) into Eq. (3.8), the required form of the MJ is obtained. The discretized
form of the constitutive equation along with the approximate MJ have been implemented into
the FE program ABAQUS by utilizing the user subroutine UMAT written in FORTRAN 77 (cf
Hibbit et al., 2008).

3.4. Application to polymeric materials

Below the accuracy of MJ approximation defined by Eq. (3.14) is tested for the material
constants that have been determined for ultra-high molecular weigth polyethylene (UHMWPE)
using the previously developed parameter evaluation algorithm (Suchocki and Skoczylas, 2016),
cf Table 1. The isochoric stored-energy function W is chosen in the form proposed by Knowles
(1977), whereas the volumetic function U is assumed in the form used by Sussman and Bathe
(1987), i.e.

W =
µ

2b

{[
1 +
b

κ

(
Ī1 − 3

)]κ
− 1
}

U =
1

D1
(J − 1)2 (3.15)

Furthermore, it is assumed that the inelastic effects are modeled by a single internal variable
(N = 1).

Table 1. Material constitutive parameters

Material µ [MPa] b [–] κ [–] D1 [MPa
−1] γ1 [–] D̃1 [–]

UHMWPE 62.042 3.63 0.25 3.3E-8 2.83 29E-3

Cast iron 665.16 - - 3.3E-8 57.40 22E-3

Brass 703.48 - - 1E-5 48.92 92E-4

WCL 1249.54 - - 1E-5 31.73 34E-3

Inconel 1114.68 - - 3.3E-8 83.43 34E-4

The test simulation involves a polymeric 1mm×1mm×1mm block undergoing ramp loading
and unloading (cf Fig. 1). The excitation is kinematic in the form of a prescribed displacement
∆u1 of the cube frontal face along direction “1”. This results in the stretch ratios λ1 and λ2 in
direction “1” and perpendicular directions “2” and “3”, respectively. The boundary conditions
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along with the undeformed and deformed configurations are illustrated in Fig. 1. The polymeric
block is first meshed using a single C3D8H1 element. The simulations are then repeated with
the mesh of 125 elements with the same results. The tests have been performed for both positive
and negative magnitude of ∆u1 (elongation and shortening, respectively).

Fig. 1. Uniaxial tension-compression simulation: (a) undeformed FE, (b) deformed FE

In order to verify the results obtained in FE simulations, a Scilab program has been utilized
which enables one to solve the one-dimensional process equations. This program is based on
the previously presented scalar equation system, cf Suchocki and Skoczylas (2016). As it can
be seen in Fig. 2, the ABAQUS UMAT and Scilab results are in an excellent agreement for
both tension and compression which allows one to conclude that for small values of γk constants
(k = 1, 2, . . . , N) Eq. (3.14) provides an accurate approximation of the elasto-plastic stiffness.

Fig. 2. Polymeric block undergoing: (a) ramp tensions with unloading, (b) ramp compression
with unloading

3.5. Perturbed deformation gradient approach

For the group of metallic materials, the model parameters reach considerably high values,
which makes approximate Eq. (3.14) inaccurate. Thus, the method of computing the approximate
tangent moduli is utilized which is based on a perturbation of the deformation gradient tensor.
This technique was originally proposed by Miehe (1996) and was further extended by Sun et al.
(2008).
The perturbed deformation gradient tensor in the time increment n+ 1 is defined as

F̂
(kl)
n+1 = Fn+1 +∆F

(kl)
n+1 (3.16)

where

∆F
(kl)
n+1 =

ε

2
(ek ⊗ elFn+1 + el ⊗ ekFn+1) (3.17)

with ε being the perturbation parameter. The increments of the strain rate tensor Dn+1 and the

spin tensorWn+1 due to the deformation gradient increment ∆F
(kl)
n+1 are given by the following

relationships

1Cubic, three-dimensional, 8 nodes, hybrid.
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∆D
(kl)
n+1 =

1

2

[
∆F
(kl)
n+1F

−1
n+1 + (∆F

(kl)
n+1F

−1
n+1)

T]

∆W
(kl)
n+1 =

1

2

[
∆F
(kl)
n+1F

−1
n+1 − (∆F

(kl)
n+1F

−1
n+1)

T]
(3.18)

Inserting Eq. (3.17) into Eqs (3.18) and performing the computations results in

∆D
(kl)
n+1 =

ε

2
(ek ⊗ el + el ⊗ ek) ∆W

(kl)
n+1 = 0 (3.19)

The increment of the Kirchhoff stress τn+1 is approximated by a finite difference, i.e.

∆τn+1 ≈ τn+1(F̂
(kl)
n+1)− τn+1(Fn+1) (3.20)

Substitution of Eqs (3.19) and Eq. (3.20) into Eqs (3.5) and (3.6)1 yields

τn+1(F̂
(kl)
n+1)− τn+1(Fn+1) ≈ Jn+1C

MJ
n+1 ·

ε

2
(ek ⊗ el + el ⊗ ek) (3.21)

which, in turn, leads to the approximate formula for the components of MJ

CMJijkl =
1

Jn+1ε
[τn+1(F̂

(kl)
n+1)− τn+1(Fn+1)]ij (3.22)

In order to compute all 21 independent components of CMJn+1, the deformation gradient tensor
has to be perturbed for 6 times. During the entire procedure, the parameter ε is held constant
with its value being prescribed by the programmer.
The framework presented above has been utilized to implement the proposed constitutive

equation of elasto-plasticity into the FE package ABAQUS. A proper user subroutine UMAT
written in FORTRAN 77 was used for that purpose, cf Hibbit et al. (2008). In the case of all the
calculations described in this work ε = 1E-8 was assumed as recommended by Sun et al. (2008).

3.6. User subroutine UMAT

The perturbed deformation gradient method requires calculation of the Kirchhoff stress
tensor components for a number of different deformation gradients. Thus, in order to shorten
the UMAT code, a separate subroutine CALCSTRESS computing the stress tensor has been
written and is called within the main code whenever it is necessary to compute the stress. The
user subroutine is then used to simulate the mechanical response of metals. The structure of the
code is depicted in the attached scheme.

4. Application to metallic materials

For the purpose of modeling the constitutive response of metals, it has been assumed that the
isochoric stored energy had the form of neo-Hooke function, i.e.

W =
µ

2
(Ī1 − 3) (4.1)

with the volumetric energy component given by Eq. (3.15)2 which reflects a linear relationship
between the pressure and the relative volume change. A more detailed description of the volu-
metric material response can be achieved by the adjustment of a more sophisticated volumetric
energy U (cf Doll and Schweizerhof, 2000). However, such an approach would require a more
thorough experimental study.
The material parameter evaluation algorithm developed by Suchocki and Skoczylas (2016)

has been utilized to determine the constant values for: cast iron, brass, WCL steel and Inconel.
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Algorithm for the implementation in Abaqus

Subroutine UMAT(input: Fn+1, STATEV, PROPS; output: σn+1, C
MJ
n+1)

1. Calculate transformation Jacobian Jn+1 = detFn+1

2. Extract STATEV, i.e. Siso0n, H̃k n, Cn (k = 1, 2, . . . , N)

3. Calculate Cauchy stress: Call CALCSTRESS, σn+1 = J
−1
n+1τn+1

Subroutine CALCSTRESS(input: Fn+1, Jn+1, STATEV, PROPS; output:
τn+1)

(a) Calculate strain measures from current increment

Cn+1 = F
T
n+1Fn+1 Cn+1 = J

−
2

3

n+1Cn+1

(b) Calculate elastic stresses from current increment

Svol0n+1 = Jn+1pn+1C
−1
n+1 pn+1 = ∂Jn+1U(Jn+1)

Siso0n+1 = J
−
2

3

n+1DEV[Sn+1] Sn+1 = 2∂Cn+1W (Cn+1)
∣∣
Cn+1=C

T

n+1

S0n+1 = S
vol
0n+1 + S

iso
0n+1

(c) Update internal state variables (k = 1, 2, . . . , N)

∆zn+1 =
√
∆Cn+1 ·∆Cn+1 ∆Cn+1 = Cn+1 −Cn

H̃k n+1 =

(
1− 1

D̃k

∆zn+1
2

)
H̃k n + γk(S

iso
0n+1 − S

iso
0n)

1 + 1

D̃k

∆zn+1
2

(d) Calculate total stress from current increment

Sn+1 = S0n+1 +
M∑

k=1

H̃k n+1 τn+1 = Fn+1Sn+1F
T
n+1

4. Calculate elastic-plastic stiffness: Call CALCTANGENT

Subroutine CALCTANGENT(input: Fn+1, Jn+1, STATEV, PROPS, τn+1;
output: CMJn+1)
For prescribed ij and rs:

(a) Call DEFGRAD

Subroutine DEFGRAD(input: Fn+1, rs; output: F̂
(rs)
n+1)

i. Calculate deformation gradient increment

∆F
(rs)
n+1 =

ε

2
(FsLer ⊗ eL + FrLes ⊗ eL)

ii. Calculate perturbed deformation gradient

F̂
(rs)
n+1 = Fn+1 +∆F

(rs)
n+1

(b) Call CALCSTRESS (F̂
(rs)
n+1 as input deformation gradient)

(c) Calculate Material Jacobian components:

CMJijrs =
1

Jn+1ε

[
τn+1(F̂

(rs)
n+1)− τn+1

(
Fn+1)

]
ij

5. Store Siso0n+1, H̃k n+1, Cn+1 in STATEV (k = 1, 2, . . . , N)
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Fig. 3. Metal block undergoing ramp loading-unloading: (a) cast iron tension, (b) cast iron compression,
(c) brass tension, (d) brass compression, (e) WCL tension, (f) WCL compression, (g) Inconel tension,

(h) Inconel compression

The parameter values have been gathered in Table 1. In simple tension experiments, metals
usually act like incompressible materials after reaching the axial strain value of 0.5% with their
Poisson’s ratio close to 0.5 (e.g. Kozłowska, 2011). Thus, the incompressibility condition is well
established within the theory of plasticity. In order to account for the material near incompres-
sibility of cast iron and Inconel, the hybrid elements C3D8H have been used during numerical
simulations. In order to check the performance of the UMAT code in the presence of a certain
amount of compressibility, D1 =∼ 1E-5MPa

−1 has been set for brass and WCL steel. In the
case of the last two materials, ordinary cubic elements C3D8 were utilized.

For each of the considered materials ramp loading/unloading processes have been simula-
ted. Both tension and compression tests have been considered. The boundary conditions are
depicted in Fig. 1. In parallel to the FE simulations, every considered process has been inde-
pendently simulated in Scilab by direct integration of the one-dimensional process equations (cf
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Suchocki and Skoczylas, 2016). An excellent agreement has been found between ABAQUS and
Scilab predictions which is depicted in Fig. 3 and allows one to conclude that the utilized MJ
approximation method provides satisfying accuracy.

5. Comparison to HMH plasticity

In order to highlight the benefits of the proposed formulation of elasto-plasticity, a comparative
study has been conducted. The material parameters of the HMH plasticity with isotropic harde-
ning were determined for brass using the same experimental data that were utilized to evaluate
the constants of the proposed new constitutive equation.

The determined parameters of the HMH plasticity were defined in ABAQUS to perform a
simulation of ramp tension with unloading. The large strain formulation was utilized by setting
on the NLGEOM option. Again, the boundary conditions illustrated in Fig. 1 were used. The
results along with the list of material constants can be seen in Fig. 4a. The flow plasticity model
provides an accurate description of the monotonic loading process, however, at the price of
defining 16 material parameters (Fig. 4b). No Bauschinger effect has been observed.

Fig. 4. HMH plasticity model for brass: (a) ramp tension-compression response, (b) material parameters

In the next step, the HMH flow plasticity and the proposed elasto-plastic model have been
compared in their ability to describe the shear-softening process (e.g. Kowalewski and Szym-
czak, 2009). For that purpose, FE simulations were prepared in which a brass block with the
dimensions 1mm×1mm×1mm was undergoing simultaneous elongation and shear deformation.
The initial configuration of the block can be seen in Fig. 5d. The simulation was divided into two
stages, i.e. uniaxial tensile prestrain (stage one) and combined tension and shear (stage two).
For the first stage of the simulation, the following boundary conditions have been assumed (cf
Fig. 5e):

1. The displacement in “1” direction is set to zero on the face ABCD.

2. The displacement in “2” direction is set to zero on the face AA′BB′.

3. The displacement in “3” direction is set to zero on the face BB′CC ′.

4. On the face A′B′C ′D′, a ramp displacement in “1” direction is defined with the maximum
value ∆u1/2 = 0.0275mm.

The uniaxial deformation phase ends when t = t0 (Fig. 5e). For the second stage of the simulation
the boundary conditions listed below are assumed:

1. The displacement in “1” direction is set to zero on the edge DC.

2. The zero displacement is set for the point B.
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3. The displacements in “1” and “2” directions are set to zero for the point A.

4. The zero displacement in “3” direction is set for the edge B′C ′.

5. The displacements in “1” and “2” directions are imposed on the face A′B′C ′D‘. The
displacement in “1” direction is assumed to increase linearly strating from the initial value
∆u1/2 = 0.0275mm up to the maximum value ∆u1 = 0.055mm. The displacement in “2”
direction is given as a triangle periodic function (Fig. 5a).

The deformed cube at the time instant t ∈ (t0; t1〉 can be seen in Fig. 5f. The axial stress response
obtained for the HMH plasticity is depicted in Fig. 5b. The axial stress generated for the present
constitutive model (Fig. 5c) is in a better agreement with the experimental measurements (e.g.
Kowalewski and Szymczak 2009) than the predictions of the classical flow theory.

Fig. 5. Combined elongation and shear deformation: (a) displacement functions, (b) shear softening
(HMH plasticity), (c) shear softening (UMAT), (d) undeformed cube, (e) deformed cube at the end of
stage 1 of the deformation process, (f) deformed cube during stage 2 of the deformation process
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6. Simulation of nonhomogenous deformation process

In order to check the performance of the UMAT code in the case of nonhomogenous deformations,
a cylinder loaded by the internal pressure has been analyzed. The boundary conditions and
cylinder dimensions are depicted in Fig. 6a. Due to the axial symmetry of this problem, only
a quarter of the cylinder was taken into account. The FE mesh used C3D8 brick elements and
can be seen in Fig. 6b. The loading pressure p was defined to increase linearly until the value of
470MPa was reached. Subsequently, the unloading process began. A residual stress and strain
states remained in the cylinder after the unloading. The material parameter values determined
for the Inconel alloy (supersaturated) were utilized (Table 1). The results of FE simulation are
gathered in Fig. 7.

Fig. 6. Cylinder loaded by internal pressure: (a) boundary conditions, (b) FE mesh

Fig. 7. FE simulation results: (a) HMH stress, (b) HMH residual stress

7. Conclusions

In this work, the FE implementation of the elasto-plasticity without the yield surface is di-
scussed. As it is illustrated, in the case of metals, the proposed elasto-plastic model can be
implemented into FEM by utilizing the perturbed deformation gradient method. It should be
emphasized that the presented framework of modeling is universal in the sense that it provides
a uniform constitutive description for both metals and polymers. Furthermore, the number of
the material parameters required to be determined is considerably small. The proposed model
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uses 4 constants to describe the mechanical behavior of brass, whereas the HMH flow plasti-
city needed determination of 16 parameters. The developed constitutive model is capable of
describing the Bauschinger effect and shear-softening effects that the classical plasticity fails to
capture accurately. What is more, the computation cost turns out to be smaller in the case of
using the proposed elastic-plastic model. Further improvement in this matter can be expected
after the developed user subroutine is thoroughly optimized.
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